OligoMix®

CONTACT US
REQUEST A QUOTE
Home » Services » Other Services » OligoMix®
Technical Information
Product Description mix of DNA oligonucleotide sequences
Number of Oligos thousands of sequences or more per tube
Oligo Form single stranded, desalted and ready for reactions
Length up to 150mers
5′ or 3′ terminus Modifications phosphate, fluorescent dyes, biotin, linkers, and others (inquire)
Internal Modifications modified DNA or RNA bases
Yield *tens of attomoles per sequence and a total of sub-fmols per OligoMix® tube
Delivery 14 days

Selected Applications

Email Us

Library Construction

In CRISPR-Cas9 mutation screens, guide RNAs targeting tens of thousands of sites within genes are cloned into viral vectors and delivered as a pool into target cells along with Cas9. By identifying guide RNAs that are enriched or depleted in cells…

LEARN MORE
Email Us

Synthetic Biology

One limitation for gene synthesis is the cost of making the building blocks (oligonucleotides) that are assembled together to make genes. Multiplex, parallel DNA construction on a large scale requires pools of large numbers of short synthetic oligos.…

LEARN MORE
Chat With Us

Sequence Capture

Several academic and commercial groups have developed a variety of capture methods for enriching or selectively amplifying subsets of the genome for targeted sequencing. The key performance parameters of these methods are…

LEARN MORE
Chat With Us

FISH Applications

Developing a FISH assay requires the use of oligonucleotide probe sets, like oligopaint probes, which are fluorescently labeled, single-stranded DNA oligonucleotides that can be used to visualize genomic regions ranging in size from tens of kilobases to many.…

LEARN MORE

Microfluidic Array Platform—in situ Synthesis

OligoMix® achieves high synthesis purity because it is produced via an advanced microarray synthesis technology (µParaflo®) that integrates a photo-generated acid (PGA) chemistry, digital photolithography (DLP), and advanced microfluidics to enable high throughput parallel synthesis of custom DNA microarrays. The PGA chemistry enables the use of standard oligo building blocks, and eliminates the need for any specially modified nucleotides which may exhibit lower coupling efficiency. DLP technology enables programmable synthesis of custom sequences and the µParaflo® microfluidic device contains the synthesis reactions each within a picoliter-scale reaction chamber, producing more uniform synthesis than reactions performed on the open surface of a slide.

OligoMix
  • Conventional Chemicals
  • Established Synthesis Processes
  • Efficient Stepwise Yield
  • Quality Final Product

Synthesis Technology References

  • Gao X, Yu PY, LeProust E, Sonigo L, Pellois JP, Zhang H. (1998) Oligonucleotide synthesis using solution photogenerated acids. Journal of the American Chemical Society 120, 12698-12699 [abstract].
  • Srivannavit O, Gulari M, Gulari E, LeProust E, Pellois JP, Gao X, Zhou X. (2004) Design and fabrication of microwell array chips for a solution-based, photogenerated acid-catalyzed parallel oligonucleotide DNA synthesisSensors and Actuators A. 116, 150-160 [abstract].
  • Zhou X, Cai S, Hong A, Yu P, Sheng N, Srivannavit O, Yong Q, Muranjan S, Rouillard JM, Xia Y, Zhang X, Xiang Q, Ganesh R, Zhu Q, Makejko A, Gulari E, Gao X. (2004) Microfluidic picoarray synthesis of oligodeoxynucleotides and simultaneously assembling of multiple DNA sequencesNucleic Acids Research 32, 5409-5417 [abstract].
  • Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, Church G. (2004) Accurate multiplex gene synthesis from programmable DNA chips. Nature 432, 1050-1054 [abstract].
REQUEST A QUOTE
CONTACT US
Technical Information